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Abstract

In the last few years, the Weibel instability has undergone a change from
a marginal phenomenon to a more intense field of research especially in
astrophysics. The possibility of magnetic field creation in an unmagnetized
plasma enables new applications and the explanation of many scenarios that are
still intensely debated. In a previous paper (Schaefer-Rolffs and Lerche 2006
Phys. Plasmas 13 062303), the fundamentals of a nonlinear theory of solitary
Weibel modes were derived. The main prerequisite is a bulk of charged particles
moving conjoined in one direction, while perpendicular small fluctuations are
possible. Such a constraint is obviously fulfilled in any relativistic astrophysical
jet, e.g. in gamma-ray bursts or in the jets of active galactic nuclei. This paper
provides calculations concerning the frequency spectra of radiation produced
from relativistic electrons contained by such solitary waves. Furthermore, the
influence of polarization and the Faraday effect are considered.

PACS numbers: 52.25.Dg, 52.27.Ny, 52.35.−g, 94.20.wf, 94.20.wj, 94.20.ws

1. Introduction

The enigma of gamma-ray bursts (GRBs) tasked astrophysicists since the first publication
by Klebesadel et al in 1973 [1]. The fact that satellites detected the radiation only during a
time of about 10 s did not allow further observations in other wavelength domains, and the
identification of optical or radio counterparts was not possible. Thus, it was not even clear if
the GRBs originated in our galaxy or in distant sources (see, e.g., [2]). It was only clear that
the sources must be very compact because of the fast variation of the radiation. First hints of
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the origin resulted from BATSE observations [3, 4] of the Compton Gamma-Ray Observatory
in the mid-1990s. Although observation with other telescopes was still not possible, the large
number of events and their isotropic distribution over the sky practically excluded an origin
inside our galaxy [5]. However, early attempts to find GRB counterparts also failed [6, 7]
until the first BeppoSAX results in 1997; the cameras allowed accurate positionings (of order
several arc minutes) within a few hours, thereby allowing optical and radio telescopes to catch
afterglows of the events [8, 9]. Red shift measurements then confirmed the host objects to be
galaxies at cosmological distances [10, 11].

Independently from the specific progenitors, the observed brightness of the cosmological
GRBs requires energies of about 1054 erg for isotropic emission from the source. In
combination with the compactness of the GRBs, an e±, γ fireball, similar to a supernova
explosion but with relativistic parameters, is favored as a model for the GRBs. The interaction
with ambient material triggers shocks, which determine the observed power-law spectra of
the afterglow. The most efficient processes for relativistic particles to lose energy are through
synchrotron radiation—provided a magnetic field is present—and inverse Compton scattering.
However, as of now the origin and mechanism of the required magnetic fields remain
elusive [12].

The problem of the large amount of energy injected in a small volume can be ameliorated
with the assumption of jet-like blast wave structures in GRBs. The total required energy is
then reduced by the factor of the solid angle �/(4π) into which the blast waves are emitted.
Due to the high pressure behind the shock the question of the stability of the jet becomes
important, because the thermal velocity dispersion perpendicular to the jet flow can also be
relativistic and so cannot be neglected in favor of only the parallel bulk velocity. However,
another relativistic effect intervenes so that the jet flow can stay collimated. The jet cannot
expand perpendicular to the jet axis faster than its internal speed of sound (c/31/2 in the
ultrarelativistic limit). A detailed overview of the theory of GRBs is given in [13–16].

Here we investigate the radiation production of a GRB afterglow in electromagnetic soliton
waves without the need for an ambient magnetic field. In a previous paper [17], we showed that
self-consistent soliton waves can arise in a relativistic plasma and thus interact with electrons
in the jet. In section 2, we give a short discussion of nonlinear waves in such plasmas with
some astrophysical parameters. In section 3, we calculate the power and frequency spectrum
of electron emission for a single electron and for a distribution of electrons. In section 4, we
consider polarization and Faraday rotation related to the radiation. Finally, section 5 gives a
short discussion and conclusion.

2. The soliton wave structure

Let

fa(�x,�y,�z) ≡ Fa

(
�x,�

2
y

)
δ(�z)

(mac)2
(1)

be a class of particle distribution functions, where �i are normalized momentum components
and ma is the rest mass of the particles a with �x = px/(mac) + zaA(ζ ),�y = py/(mac)

and �z = �L − ξpz/(mac), where pa is the physical momentum, A(ζ ) is the vector
potential, ζ = Z − ξct , the z-direction of the plasma moving with the constant (bulk) velocity
Vb = vz = c/ξ, za = ea/(mac

2) and �L = (
1+

(
p2

x +p2
y +p2

z

)/
(mac)

2
)1/2

. This behavior, with
a constant flow speed c/ξ in the z-direction and an arbitrary distribution perpendicular to the
z-direction, is a representation of jets in astrophysical plasmas, e.g. in GRBs or active galactic
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Figure 1. The normalized magnetic field b(z) with varying R. The higher the R, the smaller is the
maximum of b and the larger is zend where the field vanishes. As R → 0, corresponding to a large
amplitude Amax, the field steepens and the location of zmax = ζmax/L approaches zend = ζend/L.

nuclei (AGNs). One can then find transverse electromagnetic soliton waves (as described in
[17]) obeying the wave equation(

∂A

∂ζ

)2

= 8π

(ξ 2 − 1)
3
2

∑
a

namac
2
∫

(E⊥(Amax,�) − E⊥(A,�))Fa d�x d�y, (2)

where na and ea are the number density and charge of the particle a, respectively,
E⊥ = [

1 + � 2
y + (�x − zaA)2

]1/2
, the particle energy perpendicular to the z-axis, and

Amax is the maximum value for the potential.
An analytical treatment of equation (2) can be given when Amax and A are both large

yielding soliton waves [17] while, when A is small, equation (2) yields sinusoidal waves
without a soliton behavior. Thus, a perturbation in the plasma may first cause aperiodic
linear Weibel modes that can grow to become nonlinear soliton waves. With the normalized
potential, u = A/Amax, and magnetic field, b = B/Bmax, the solution of equation (2) for the
magnetic field is given [17] as

b2 = (du/dz)2 = (1 − u)(u − R2)/u, (3)

where B2
max = (dA/dζ )2

max = (1 − R)2A2
max

/
L2, R2 = G2

/(
2G0A

2
max

)
, z = ζ/L is the

normalized length with L2 = (ξ 2 − 1)
3
2 Amax/G0 and

G0 = 8π
∑

a

na|ea|
∫

d2�Fa = 8π
∑

a

na|ea| > 0, (4a)

G2 = 8π
∑

a

na|ea|z−2
a

∫
d2�Fa

(
1 + � 2

y

)
> 0. (4b)

As shown in figure 1, the structure of the soliton wave depends only on the parameter R
involving the zeroth and second moments of the distribution function and on the maximum
potential. The crucial points are now the magnitude of the factor Amax and the particle density
na . With zi = e/(Mc2), it can be shown [17] that for a soliton wave to exist in an electron–
proton plasma (with particle masses m = μM and M for electrons and protons, respectively)
one requires

(ziAmax)
2 >

[
1 +

〈
� 2

y

〉
i

+ μ2(1 +
〈
� 2

y

〉
e

)]/
4, (5)

3



J. Phys. A: Math. Theor. 42 (2009) 105501 U Schaefer-Rolffs et al

where
〈
� 2

y

〉
a

= ∫
d2�Fa�

2
y . Furthermore, the total length of the soliton wave, |�ζ |, and a

typical timescale, �t0, in the comoving frame of the soliton are given through

|�ζ | � zend(c/ωp,i)(ziAmax)
1/2�

−3/2
b (c/Vb)

3/2, (6a)

�t0 = (�b/c)(Vb/c)|�ζ | � zendω
−1
p,i(ziAmax)

1/2�
−1/2
b (c/Vb)

1/2, (6b)

with ω2
p,i = 4πne2/M being the plasma frequency of the ions [17] and �b = ξ/(ξ 2 − 1)1/2

being the bulk Lorentz factor. The maxima of the magnetic and electric fields can then be
described with

B2
max

/
8π = 2(1 − R)2nMc2(ziAmax)(Vb/c)

3�3
b, (7a)

E2
max

/
8π = B2

max

/
(8π)(c/Vb)

2 = 2(1 − R)2nMc2(ziAmax)(Vb/c)�
3
b. (7b)

For comparison, note that in the interstellar medium where Binterstellar � 3 μG and
ninterstellar � 0.1 cm−3, one has

B2
interstellar

/
(8πninterstellarMc2) � 2 × 10−9, (8)

while in relativistic jets, for which �b � 102 and therefore Vb � c, one has

B2
max

/
(8πnMc2) � 2 × 106(1 − R)2(ziAmax)(�b/100)3 (9)

representing field strengths of the order 90(1 − R)(ziAmax)
1/2(�b/100)3/2(n/0.1 cm−3)1/2 G

where n is the number density in the jet, seen in the frame where the jet has a bulk speed Vb.
An overall upper bound for na can be found by considering the limitations due to (i)

radiation, (ii) collision and (iii) degeneracy pressure of the electrons; these bounds also lead
to an overall maximum magnetic field for the soliton. Each of the limitations gives slightly
different limits, but they are all of the same order. In the case of radiation by electrons, one
finds [17]

nmax �
[
2.5 × 1033/〈1 + � 2

y

〉2
e

]
cm−3, (10a)

Bmax � 1.4 × 1019(1 − R)(ziAmax)
1/2(�b/100)3/2/〈1 + � 2

y

〉
e

G; (10b)

for the collision of electrons, one has

nmax � 2.2 × 1033 �b(Vb/c)
3

(ziAmax)
cm−3, (11a)

Bmax � 1.3 × 1020(1 − R)(�b/100) G, (11b)

while the degeneracy pressure gives

nmax � (mc/h̄)3 = 1.7 × 1031 cm−3, (12a)

Bmax � 1.2 × 1018(1 − R)(ziAmax)
1/2(�b/100)3/2 G. (12b)

This short discussion provides the framework for the further calculation of radiation from
the jets in GRBs, which will follow in the subsequent sections.

3. Development of the radiation field

The radiation field consists of the radiation of all the electrons interacting with the soliton as
depicted in figure 2. Therefore, one first considers the radiation emission of a single electron
accelerated by the wave. Then one can integrate over the electron distribution in the jet to
obtain the total radiation field generated by the soliton.
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Figure 2. Geometry of the radiation in the rest frame of the soliton. (a) A bulk of electrons
approaches the soliton. (b) When the electrons are deflected by the electric fields of the soliton,
they emit radiation, mostly in a small cone along their direction of motion, which is typical for
relativistic radiation. For the sake of clarity, the maximum angle θm of the cone is exaggerated.

3.1. The total power radiated

The radiated power of a single charged particle is, in general, defined by [18]

P = 2e2/(3c)γ 6( �̇β
2
− (�β × �̇β)2), (13)

with �β = �v/c. As shown in [17] in the case of the soliton wave structure (with W = eA/mc),
one obtains the radiated power from one electron as

P = 2e2/(3c)�2
b

(
1 + � 2

y

)
(Ẇ/c)2. (14)

The total radiated energy of one electron can be calculated [17] by integration over the
nonlinear wave time or, by the substitution ξc dt = dζ = L dz, over the length of the soliton
yielding (with A = Amaxu)

E =
∫

P dt = 4e2

3μ2L
(ziAmax)

2 c

Vb

�2
b

(
1 + � 2

y

) ∫ 1

R2
du

∣∣∣∣∂u

∂z

∣∣∣∣ . (15)

With the definition from equation (3),

IR ≡
∫ 1

R2
du

∣∣∣∣∂u

∂z

∣∣∣∣ =
∫ 1

R2
du

(1 − u)1/2(u − R2)1/2

u1/2
, (16)

the radiated energy is given by

E = (4e2/3μ2L)(ziAmax)
2(c/Vb)�

2
b

(
1 + � 2

y

)
IR. (17)
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3.2. Radiation emission of one electron

The differential intensity in the angular frequency range ω to ω + dω and in the solid angle
range � to � + d� is expressed [18] through

d2I

dω d�
= e2ω2

4π2c

∣∣∣∣
∫ ∞

−∞
(�n × (�n×�β)) exp[iω(t − �n · �r(t)/c)] dt

∣∣∣∣2 , (18)

with the unit vector �n = (nx, ny, nz) (with n2
x + n2

y + n2
z = 1) in the line of sight. The

particle velocity can be separated into a constant part and differences involving the varying
potential A:

βx ≡ β0,x + �βx, (19a)

βy ≡ β0,y + �βy, (19b)

βz = Vb/c = ξ−1, (19c)

with

β0,x = �x − zaR
2Amax

�bE⊥[R2Amax]
, (20a)

β0,y = �y

�bE⊥[R2Amax]
, (20b)

the constant velocity components outside the soliton where A = R2Amax [17], and

�βx = 1

�b

[
�x

(
1

E⊥[A]
− 1

E⊥[R2Amax]

)
− za

(
A

E⊥[A]
− R2Amax

E⊥[R2Amax]

)]
, (21a)

�βy = �y

�b

(
1

E⊥[A]
− 1

E⊥[R2Amax]

)
, (21b)

the differences of the particle velocities within the soliton. Note that �βx and �βy are different
from zero only in |ζ | = ∣∣Z0 −(

c2t/Vb�
2
b

)∣∣ < ζend. Then one obtains for the particle trajectory

X(t) = X0 + β0,xct + c

∫ t

−∞
�βx(t

′) dt ′, (22a)

Y (t) = Y0 + β0,yct + c

∫ t

−∞
�βy(t

′) dt ′, (22b)

Z(t) = Z0 + Vbt. (22c)

Note that large X, Y,Z has the dimension of length, while small x, y, z are dimensionless.
The phase �(t) = ω(t − �n · �r(t)/c) in equation (18) can then be expressed in terms of the
particle trajectories,

�(t) ≡ �0 − ��, (23)

with

�0 = ω[t (1 − �n · �β0) − �n · �r0/c], (24a)

�� = ω

∫ t

−∞
dt ′[nx�βx(t

′) + ny�βy(t
′)], (24b)

6
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where �r0 = (X0, Y0, Z0) and �β0 = (β0,x, β0,y , Vb/c). Note that ��(ζ � −ζend) = 0, but
��(ζ � ζend) = ��(ζend) 	= 0. Thus, all the integrals in equation (18) are of the form∫ ∞

−∞
dt �β(t) exp[i�(t)] ≡ Ĵ , (25)

leading to an alternative notation for equation (18):

d2I

dω d�
= e2ω2

4π2c
|�n × (�n×Ĵ )|2, (26)

with

Ĵ⊥ = Ĵ − �n(�n · Ĵ ). (27)

The tedious evaluation of the integrals (25) is performed in appendix A in terms of two
basic integrals:

��(ζ) = ω�

∫ ζ

−ζend

dζ ′[nx�βx(ζ
′) + ny�βy(ζ

′)], (28a)

jy =
∫ ζend

−ζend

dζ exp[iωlζ − i��(ζ)]�βy(ζ ), (28b)

with � = (
Vb�

2
b

/
c2
)

and l = (1 − �n · �β0)�. These integrals allow one to write an expression
leading to d2I/(dω d�) (as given in appendix A) because

�j⊥ · �j⊥
∗ = |�j 2|2 − (�n − �β0) · [�j∗

2(�n · �j 2) + �j 2(�n · �j∗
2)]

1 − (�n · �β0)
+

|�n − �β0|2
(1 − (�n · �β0))2

|�n · �j 2|2, (29)

where �j 2 = (jx, jy, 0).
Now consider the particle motion of a single electron under the influence of the soliton

wave. Within the range −ζend � ζ � ζend, the electron motion is determined by the difference
velocities �βx,�βy as functions of ζ . Furthermore, there is a phase shift ��(ζ). The
calculations of the velocities are given (to second order in ζ ) in appendix B yielding

��β ≡ ��β0(ζend − |ζ |)2 in ζmax � |ζ | � ζend, regime (a),

≡ ��β1 − ��β2ζ
2 in 0 � |ζ | � ζmax, regime (b),

(30)

where ��β0, ��β1 and ��β2 are given in appendix B. Regime (a) describes the outer region
of the soliton, where the field strength drops to zero at ζend from the maximum value at
ζmax, whereas regime (b) denotes the inner region in the interval [−ζmax, ζmax]. It was
previously deduced [17] that a solitary wave exists only if both A and Amax are ‘large’,
i.e. |zaAmax| � max{1, |�x |, |�y |, |�z|}. This case describes particles in a strong field where
the interaction time is long enough that the particles support the nonlinear wave. However,
the soliton parameter R depends on zAmax itself, which will be represented in the following by

R =
(

G2

2G0

)1/2 1

Amax
≡ R′

zaAmax
. (31)

Note that R′ is governed only by the distribution function Fa . Thus, |zaR
2Amax| =

|(R′)2/(zaAmax)| � max{1, |�x |, |�y |, |�z|}.
With the above definitions, from equations (30a) and (30b), one can calculate the integrals

��, jx and jy . Note that for ��, one intersects the wave in three regions:

��1(ζ ) ≡ ��(−ζend � ζ � −ζmax)

= ω�(�n · ��β0)(ζend + ζ )3/3, (32a)

7
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��2(ζ ) ≡ ��(−ζmax � ζ � ζmax)

= ��1(ζ = −ζmax) + ω�
[
(�n · ��β1)(ζmax + ζ ) − (�n · ��β2)

(
ζ 3

max + ζ 3)/3
]
, (32b)

��3(ζ ) ≡ ��(ζmax � ζ � ζend)

= ��2(ζ = ζmax) − ω�(�n · ��β0)[(ζend − ζ )3 − (ζend − ζmax)
3]/3. (32c)

With this solution for ��, one can write the phase shift change of a particle after passing
through the soliton as

��(ζ � ζend) = ��(ζend) = 2ω�(�n · ��β0)(ζend − ζmax)
3/3

+ 2ω�ζmax
[
(�n · ��β1) − (�n · ��β2)ζ

2
max

/
3
]
, (33)

yielding (after the transformations ζ + ζend ≡ ζ̄ in solution (32a), ζ + ζmax ≡ ζ̄ in solution
(32b) and −ζ + ζend ≡ ζ̄ in solution (32c), respectively)

jy =
∫ −ζmax

−ζend

�β0,y(−ζend − ζ )2 exp[iωlζ − i��1(ζ )] dζ

+
∫ ζmax

−ζmax

(�β1,y − �β2,yζ
2) exp[iωlζ − i��2(ζ )] dζ

+
∫ ζend

ζmax

�β0,y(ζend − ζ )2 exp[iωlζ − i��3(ζ )] dζ

= �β0,y

[ ∫ ζend−ζmax

0
dζ̄ ζ̄ 2 exp[iωl(ζ̄ − ζend) − i��1(ζ̄ − ζend)]

−
∫ 0

ζend−ζmax

dζ̄ ζ̄ 2 exp[−iωl(ζ̄ − ζend) − i��3(−ζ̄ + ζend)]

]

+
∫ 2ζmax

0
dζ̄ [�β1,y − �β2,y(ζ

2
max − 2ζmaxζ̄ + ζ̄ 2)]

× exp[iωl(ζ̄ − ζmax) − i��2(ζ̄ − ζmax)]). (34)

With the replacement of all explicit y subscripts by x subscripts in equation (34), one has the
corresponding expression for jx .

Note that in each integrand of jx and jy , one has the general exponential structure
ψ0 + ψ1ζ̄ + ψ3ζ̄

3. Thus, there is a basic integral type that can be written as∫ Aj

0
dζ̄ ζ̄ n exp[iψ1,j ζ̄ + iψ3,j ζ̄

3] ≡ Mn[Aj ;ψ1,j , ψ3,j ]. (35)

First note thatAj ∈ {ζend−ζmax, 2ζmax} > 0. Second, note that ψ1,j ∈ {ω�(1−�n· �β0), ω�(1−
�n · �β0 − �n · ��β1)} > 0 because �n · �β � 1. Thus, only ψ3,j can be either positive or negative
and so one is interested in the two integrals

M±
n [Aj ;ψ1,j , ψ3,j ] =

∫ Aj

0
dζ̄ ζ̄ n exp[i(ψ1,j ζ̄ ± |ψ3,j |ζ̄ 3)]. (36)

For later relevance, note that ψ1,j , |ψ3,j | ∝ ω.
For �j⊥, one has to consider

jy = �β0,y(M2[ζend − ζmax;ωl,−ω�(�n · ��β0)/3] exp[−iωlζend]

+ M2[ζend − ζmax;ωl,−ω�(�n · ��β0)/3]∗ exp[iωlζend − i��(ζend)])

+
[(

�β1,y − �β2,yζ
2
max

)
M0[2ζmax;ω(l − �(�n · ��β1)), ω�(�n · ��β2)/3]

8
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+ 2�β2,yζmaxM1[2ζmax;ω(l − �(�n · ��β1)), ω�(�n · ��β2)/3]

−�β2,yM2[2ζmax;ω(l − �(�n · ��β1)), ω�(�n · ��β2)/3]
]

× exp[−iωlζmax − iω�(�n · ��β0)(ζend − ζmax)
3/3]. (37)

Then one can write down jx (using the replacement of all explicit y subscripts by x subscripts)
and subsequently �j⊥ · �j⊥

∗
in terms of the integral Mn[Aj ;ψ1,j , ψ3,j ]. There remains then

only the job of writing down the complete expression for the differential intensity spectrum
once the Mn integrals are evaluated.

Note that one has to develop approximations for the integrals (36) as done in appendix C.
Thus, one has two regimes with different approximations (30a) and (30b) and consequently
six variables for the integral Mn, namely Aa, ψ1,a, ψ3,a,Ab, ψ1,b and ψ3,a . In particular, the
emerging scalar products �n · ��β0 and �n · ��β2 enable ψ3,j to change its sign yielding two
different evaluations of Mn: case (1) for �n · ��β0,2 > 0 and case (2) for �n · ��β0,2 < 0.

It is useful to introduce characteristic lengths,

ζc,j ≡ (ψ1,j /3|ψ3,j |)1/2, (38a)

and characteristic frequency ratios,

ω/ωc,j ≡ (
ψ3

1,j

/
3|ψ3,j |

)1/2
, (38b)

with j ∈ {a, b}. Note that all ψ1,j and ψ3,j are proportional to ω. Second, both the
characteristic frequency and length are functions of the particle’s momentum �� and the angle
to the observer defined through �n.

There are three independent conditions for the differential frequency spectrum to be
considered: the different regimes (a) and (b), the influence of the viewing angle leading to
cases (1) and (2), and the low and high frequency ranges. Thus, eight different calculations
have to be done. For the spectrum of one particle at a particular viewing angle, one has to
consider both regimes of the soliton and then calculate the frequency approximations. Then
if one is interested in the angular dependence of a distribution of particles, one has to include
the angle effect.

3.3. The differential intensity spectrum for small and large frequencies

The approximations introduced above can be used to evaluate the spectrum for small and large
frequencies. Two angular functions are of importance within the computations

S1[θ, �b,�] ≡ 1 −
√

1 − �−2
b cos θ − (sin θ/�b)�, (39)

S2[θ, �b,�] ≡ (sin θ/�b)�. (40)

Details of these functions are given in appendix D.
At the end of each subsection, numerical calculations are given for an electron spectrum

Fa = γ − 2

2π

δ(�z)(
1 + � 2

x + � 2
y + � 2

z

)γ /2 . (41)

We use dimensionless units with the normalizations (�L)ω and (4π2c/e2) d2I/(dω d�). For
numerical estimations, parameter values used are

�b = 10, zaAmax = 10 ⇒ R = 10−1 (for γ = 5),

�x,y = 10−2, θ = arcsin �−1
b , φ = 5π/4,

(42)

unless otherwise prescribed.
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For low frequencies, one has the differential intensity spectrum (appendix E):

d2I

dω d�
� e2

4π2c

(
ω

ω0

)2

. (43)

This result is limited by the condition

ω � ωlow ≡ (�Aj S1)
−1. (44)

Thus for low frequencies, one has dipole radiation.
In the high frequency regime (see appendix F) there arise different approximations,

depending on the scalar products �n · ��β0,2. For |�n · ��β0,2| � 0 one obtains two different
solutions, depending on whether the scalar products (�n · ��β0,2) are positive or negative,
yielding different results with respect to the angle between the velocity perturbations and the
line of sight. The first solution (except for 1/(2�b) � θ � 2/�b) is given by

d2I

dω d�
� e2

4π2c

πω

ωc,b sin2 θ sin2 φ
exp

[
− 4ω

3ωc,b

]
. (45)

The second solution (where 1/(2�b) � θ � 2/�b) is obtained similarly, yielding

d2I

dω d�
� e2

4π2c

2π�2
bω

ωc,a cos2 φ
. (46)

The parameters ωc,a and ωc,b are defined in appendix F. Both solutions are limited by

ω � ωhigh ≡
{

3
/(

�A3
bS2,b

)
, θ 	∈ [1/(2�b), 2/�b]

(�AaS1,a)
−1, θ ∈ [1/(2�b), 2/�b].

(47)

If �n · ��β0,2 � 0 (within an interval [(2k + 1)π/2 − �φa/2, (2k + 1)π/2 + �φa/2] in
regime (a) and [kπ − �φb/2, kπ + �φb/2] in regime (b), where �φa,b(�b, zaAmax, θ, ω) is
given in appendix F.4 and k = 0, 1), then one has

d2I

dω d�
� e2α2

4π2c
= const, (48)

with α being given in appendix F and a lower limit for the frequency

ω � ω∗
high ≡ (�AaS1,a)

−1. (49)

Note that there exists a high frequency problem. If integrated over ωhigh � ω � ∞,
equation (46) (and similarly equation (48)) would yield an infinite amount of radiation.
However, one knows [17] that the emitted energy of one electron is exactly limited to

E = e2

4π2c

16π2

3μ2
(�L)−1�4

bIR

(
1 + � 2

y

)
(ziAmax)

2, (50)

with IR being given in equation (16) and μ = me/mi . Thus, there is an ‘edge’ in the
differential frequency spectrum at high frequencies where the electron has lost all its energy.
This restriction allows one to find the maximum ωmax to which the radiation can exist by
writing

E =
∫

d�

∫ ωmax

0
dω

d2I

dω d�

� e2

4π2c

[∫
A

d�

∫ ω∗

0

ω2

ω2
0

+ 2π�2
b

∫
A

d�

∫ ωmax

ω∗
dω

ω

cos2 φωc,a

+
∫

B

d�

∫ ω∗,α

0

ω2

ω2
0

+
∫

B

d�

∫ ωmax

ω∗,α

α2

]

10
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= e2

4π2c

[
4π3�6

b

3

∫
A

d�
ω4

0

cos6 φω3
c,a

− 2

3

∫
B

d�α3ω0

+ ωmax

∫
B

d�α2 + ω2
max2π�2

b

∫
A

d�
1

cos2 φωc,a

]
. (51)

Here, A and B denote the regimes where �n · ��β0,2 � 0 and �n · ��β0,2 � 0, respectively.
Equation (51) can be rearranged to yield the quadratic equation for ωmax:

0 = ω2
max

[
π�2

b

∫
A

d�
1

cos2 φωc,a

]
+ ωmax

[∫
B

d�α2

]

−
[

4π2cE
e2

− 4π3�6
b

3

∫
A

d�
ω4

0

cos6 φω3
c,a

+
2

3

∫
B

d�α3ω0

]
, (52)

where E, ω∗, ω0 and ωc,a are functions of �n and �� .

3.4. Intermediate values

There exist intermediate values, ω∗, between the two regimes of low and high frequencies
depending on the high frequency approximation. For |�n · ��β0,2| � 0, ω∗ is characterized by
the equation

ω∗ = (
2π�2

b

/
cos2 φ

)(
ω2

0

/
ωc,a

)
, (53)

for regime (a), and for regime (b) by

ω∗ = (3/4)ωc,bW
[
(4π/(3 sin2 θ sin2 φ))

(
ω2

0

/
ω2

c,b

)]
, (54)

where W [x] denotes the Lambert W function, i.e. the solution y ≡ W [x] of the equation
x = y exp[y].

For the high frequency solution (48), one has an intermediate value

ω∗,α = αω0. (55)

Characteristic curves of the differential frequency spectrum are shown in figure 3 for
various polar angles θ = 10−6, 0.1, 0.3. Note that approximation (48) applies for small θ ; for
θ � 1/�b, the spectrum is given by equation (46); for larger polar angles, approximation (45)
is valid. Thus, most of the energy is radiated within a cone of angle θm = arcsin �−1

b � �−1
b ,

as shown in figure 4 for a frequency of ω = 104/(�L) and φ = 3π/2, typical for relativistic
particles. Therefore, the main contribution of the radiation (at least for the given example) is
directly connected with the outer region (a) of the soliton. This result is not surprising, because
the numbers chosen yield R = 0.1 which has—as can be estimated from figure 1—a relative
large gradient of the magnetic field between zmax and zend leading to strong radiation. Note
that both large gradients db/dx (at the beginning and at the end of the soliton) are positive.

3.5. Integration over a distribution of particles

For the electron power-law distribution (41),

Fa = γ − 2

2π

δ(�z)(
1 + � 2

x + � 2
y + � 2

z

)γ /2 , (56)

with γ � 4, one now calculates the radiation spectrum. The frequency limits ωlow and ωhigh are
functions of the momenta pj ∈ {�x,�y,�z}. However, because the real spectrum must have
a smooth transition between the two regimes, such can be approximated by using both regimes

11
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Figure 3. Characteristic curve shapes for the radiation in terms of ω(�L) of the electrons
for various polar angles θ , with θa = 10−6, θb = 0.1 and θc = 0.3. The dashed lines are
the continuation of the graphs for the regions where the low frequency and high frequency
approximations are not accurate.

0 0.5 1 1.5 2 2.5 3
0.1

0.5

1

5

10

d I
d d

(rad )

Figure 4. The differential intensity as a function of θ for a frequency of ω = 104/(�L) and
φ = 3π/2.

to first order in ω∗. Formulae (43), (45) and (46) have been derived for |pj | � |zaAmax|.
However, because the distribution function tends to zero as � → ∞, the high-� part to the
integral is negligible. Consequently, one has to compute the integral∫

d� 3Fa

d2I

dω d�
= e2

4π2c

2(γ − 2)

π

∫ ∞

0
d�x

∫ ∞

0
d�y

1(
1 + � 2

x + � 2
y

)γ /2

×
(

ω2

ω2
0

H [ω∗(�x,�y) − ω] +
2π�2

bω

cos2 φωc,a

H [ω − ω∗(�x,�y)]

)
. (57)

Because |ω∗(�x,�y) − ω| cannot be rearranged to obtain analytic constraints for �x or �y ,
the solution of the integral (57) can be performed numerically only. For the polar angle where
most radiation is beamed, θm = 0.1, the result is illustrated in figure 5. Note that this curve is
of comparable magnitude and slopes as its counterpart in figure 3.

3.6. Viewing angle effect

Here we consider the behavior of the viewing angle for one electron. First, the polar variation
gives the relativistic beaming into the propagation direction as shown in figure 4. For the

12
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Figure 5. Radiation of an ensemble of electrons for a polar angle θ = 0.1.

azimuth angle, one has to consider the parameters ω0 (for the maximum at θm � �−1
b ) and

ωc,j from equations (43), (45) and (46). Apart from sine or cosine terms, each has a factor

containing trigonometric functions of φ and �j (with Bj = �j

/(
1 + � 2

x + � 2
y

)1/2
):

ω0 ∝ |(sin φ − By)(1 + Bx) − (cos φ − Bx)By |, (58a)

ωc,a ∝ ∣∣sin φ�x�y − cos φ
(
1 + � 2

y

)∣∣1/2
, (58b)

ωc,b ∝ |sin φ�y |1/2. (58c)

Such factors can be zero for particular azimuths yielding apparent poles in the spectrum.
However, such poles are prevented because the approximation (48) is valid, which has no pole.
Thus, for very small momenta for equations (43) and (45) one has the estimation φ � 0, π

describing a plane parallel to the soliton direction of motion, comparable to synchrotron
radiation, but solution (46) is remarkably different. Here the azimuth angles are φ � π/2,

3π/2, exhibiting the main radiation contribution perpendicular to the plane of motion.
Now one is interested in the azimuthal distribution of the total radiation from one electron.

Therefore, it is necessary to first perform the ω-integral in equations (43) and (46), because
these contribute most to the spectrum. Carrying out the integrations, one obtains

dI

d�
= e2

4π2c

(
π�2

b

cos2 φ

ω2
max

ωc,a

− 4π3�6
b

3 cos6 φ

ω4
0

ω3
c,a

)
, (59)

where ωmax is the maximum frequency from equation (52).
The parameters that have an angular dependence on equation (59) are ω0 (for θm � �−1

b )
and ωc,a as given in appendices appendix D and appendix F. Numerical results are shown
in figure 6 for a maximum frequency ωmax = 106/(�L). First, note that both terms have
maxima at φ � π/2, 3π/2 unlike synchrotron radiation. However, the existence of poles in
equation (59) is prevented analogous to equations (43), (45) and (46). Second, note that for
a high ωmax the first term in equation (59) dominates and the azimuthal variation can be well
described by |cos φ|−5/2.

4. Polarization and Faraday effect

In this section, we consider the polarization and Faraday rotation of the soliton radiation. For
later comparison note that synchrotron radiation is polarized mostly parallel to the plane of
the electron trajectory [18].
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Figure 6. The frequency-integrated differential intensity as a function of φ for a given
ωmax = 106/(�L) and the parameters given in equation (42).

4.1. Polarization

For polarization, one has to specify two perpendicular unit vectors and the line of sight
direction given by �n. For the radiation process, choose the direction of the electric field of the
soliton as a reference, that is, the unit vector �ex = (1, 0, 0). The polarization vectors are then
given by

�e‖ = �ex − (�n · �ex)�n
ε

= 1

ε

⎛
⎝cos2 θ + sin2 θ sin2 φ

−sin2 θ cos φ sin φ

−cos θ sin θ cos φ

⎞
⎠ ,

�e⊥ = �n × �e‖ = 1

ε

⎛
⎝ 0

cos θ

−sin θ sin φ

⎞
⎠ ,

(60)

where

ε = (cos2 θ + sin2 θ sin2 φ)1/2 (61)

normalizes both polarization vectors. For the polar angle θm = arcsin �−1
b (where an electron

radiates most), the polarization vectors are approximately

�e‖ � (1, 0,−cos φ/�b), �e⊥ � (0, 1,−sin φ/�b) (62)

for �b � 1.
The differential intensity spectrum for each polarization vector is given in general by [18](

d2I

dω d�

)
‖,⊥

= e2ω2

4π2c
|�e‖,⊥ · [�n × (�n×Ĵ )]|2, (63)

yielding(
d2I

dω d�

)
‖

= e2ω2

4π2c

�2

ε2

∣∣∣∣jx − sin θ cos φ − β0,x

1 − �n · �β0

(�n · �j 2)

∣∣∣∣2 ,

(
d2I

dω d�

)
⊥

= e2ω2

4π2c

�2

ε2

∣∣∣∣∣cos θjy − sin θ sin φ
(
1 − �−2

b

)1/2 − cos θβ0,y

1 − �n · �β0

(�n · �j 2)

∣∣∣∣∣
2

.

(64)

14



J. Phys. A: Math. Theor. 42 (2009) 105501 U Schaefer-Rolffs et al

0 1 2 3 4 5 6

1

106

d I
d d

104

102

10

10 (rad )

Figure 7. The differential intensity divided into the fractions polarized parallel (dotted) and
perpendicular (dashed) to the plane of the soliton as a function of φ for ω = 101/(�L) and the
parameters given in equation (42). The solid line labels the combined differential intensity. The
parallel polarization dominates the radiation.

For θ = 0, the spectra simplify to(
d2I

dω d�

)
‖

= e2ω2

4π2c
�2|jx |2,

(
d2I

dω d�

)
⊥

= e2ω2

4π2c
�2|jy |2. (65)

For θ = θm and �b � 1, one finds(
d2I

dω d�

)
‖

� e2ω2

4π2c
�2 sin2 φ

∣∣∣∣ (sin φ − By)jx − (cos φ − Bx)jy

1 − (cos φBx + sin φBy)

∣∣∣∣2 , (66a)

(
d2I

dω d�

)
⊥

� e2ω2

4π2c
�2 cos2 φ

∣∣∣∣ (sin φ − By)jx − (cos φ − Bx)jy

1 − (cos φBx + sin φBy)

∣∣∣∣2 . (66b)

Note the similarity of solutions (66a) and (66b), and equation (A.24), apart from the sine and
cosine terms. Thus, the polarization of the maximum radiation depends dominantly on the
azimuthal angle to the line of sight and the soliton propagation direction for θm. If the observer
is above or below the plane of the soliton by an angle θm, one has radiation polarized parallel
to the plane; otherwise, in the soliton plane, the observer sees a perpendicular polarized beam.
However, as depicted in figure 7, the emission is concentrated at angles φ � π/2, 3π/2, so
that the radiation is, in general, polarized parallel to the electric field of the soliton. Such is
shown in figure 8.

4.2. Faraday effect

The Faraday effect describes the rotation of the polarization plane due to the magnetic fields
of the medium through which the radiation propagates:

δα = 2πe3

m2
ec

2

1

ω2

∫ B

A

ne
�B · d�l, (67)

where z is the straight path of one photon with frequency ω from a point between the location
of emission and the soliton, A, to a point B between the soliton to the observer. First, consider
that the photon passes the soliton at a displacement ζ̂ = Lẑ between both ends of the soliton,
−ζend � ζ̂ � ζend. (The displacement variables ẑ, ζ̂ are hatted to distinguish them from
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Figure 8. Polarization of the emitted radiation for θ � θm as a function of the azimuthal angle
φ. The soliton is represented by its electric fields in the x-direction. (a) For azimuthal angles
φ = π/2, 3π/2, one has parallel polarization. (b) Azimuthal angles φ = 0, π yield perpendicular
polarization. However, the intensity is considerably less than in the parallel case (cf figure 7).

spacial variables z, ζ .) Second, consider that the soliton has a finite size perpendicular to the
z-direction, modeled here by Gaussian structures. Then the magnetic field can be written as
(with x = X/W, y = Y/W and z = ζ/L)

�B(X, Y, ζ ) = (1 − R)2 Amax

L
b(ζ/L) exp

(
−X2 + Y 2

κ2L2

)
�ey, (68)

where κ = W/L gives, approximately, the ratio of width W and length scales L. The curvature
(to B from A) has the parametric representation

C = L

⎛
⎝t sin θ cos φ

t sin θ sin φ

t cos θ + ẑ

⎞
⎠ , (69)

with t ∈ [tA, tB]. Because the photon is considered to pass through the whole soliton, one can
extend both limits to ±∞.

If the density is constant, one has

δα = ω2
p,e

2ω2
(1 − R)2ze

Amax

L
sin θ sin φL

∫ ∞

−∞
dt exp

(
− sin2 θ

κ2
t2

)
b(ẑ + t cos θ), (70)

where ω2
p,e = 4πnee

2/me, the local plasma frequency, and ze = e/(mec
2).

Equation (70) can be calculated performing a Fourier transformation of b(ẑ + t cos θ),
yielding

δα � κ

23/2

ω2
p,e

ω2
(1 − R)2zeAmax sin φ

∫ ∞

−∞
dk b(k) eiẑk exp[−κ2 cot2 θk2/4]

� κ
π1/2

2

ω2
p,e

ω2
(1 − R)2zeAmax sin φb(ẑ), (71)

where the last approximation is valid for polar angles θ � arctan(κ/2).
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Figure 9. The Faraday rotation δα(ω2/ω2
p,e) for a photon traversing at a soliton with a

dimensionless displacement ẑ = ζ̂ /L. The numerical result is computed with the parameters
given in equation (42).

Numerical results for the Faraday rotation δα
(
ω2

/
ω2

p,e

)
described by equation (71) as a

function of the displacement ẑ are given in figure 9. Note that the Faraday rotation is closely
related to the magnetic field shown in figure 1. In the case of small angles θ , the integration
over θ averages the contribution of the magnetic field creating a curve with lower gradients
and a lower maximum. For θ = 0, equivalent to traversing the whole soliton, the Faraday
effect vanishes.

5. Discussion and conclusion

Previously [17], we presented the theory of self-consistent solitons that can produce radiation
in relativistic plasmas without an explicit background magnetic field. We considered this
radiation effect for the case of the origin of GRBs. The favored fireball scenario yields,
in interaction with ambient matter, shock waves that can accelerate charged particles—most
prominently, electrons and protons [23].

The question of the energy output of the particles is mostly referred to as synchrotron
radiation and inverse Compton scattering. However, the first process of energy dissipation
requires the presence of a background magnetic field. Until now, the origin and the mechanism
for such a field have been discussed intensely [24–26]. Other radiation processes should be
taken into account.

As we have shown, nonlinear solitary waves can arise from a relativistic, but
nonmagnetized, plasma. The main variable that has to be considered is the differential
frequency spectrum of a single electron. Then, one is able to investigate the influence of the
viewing angle to both calculate the spectrum for a total ensemble of particles and to examine
the polarization. In principle, the method of obtaining the differential frequency spectrum is
similar to that for synchrotron radiation. The basic difference is that for synchrotron radiation
the magnetic field is considered to be constant and the electron moves in circles perpendicular
to the magnetic field, while in the case of the soliton the electrons move mostly linearly and are
deflected via the Lorentz force. Thus, the radiation is not produced by acceleration through a
constant background field but, instead, is caused by an interaction of the electrons with highly
varying magnetic and electric fields.

17



J. Phys. A: Math. Theor. 42 (2009) 105501 U Schaefer-Rolffs et al

For illustration purposes, we chose numerical values for the parameters: �b = 10,

zaAmax = 10,�x,y = 10−2, θ = arcsin �−1
b and φ = 5π/4, unless mentioned otherwise. The

results of the numerical calculations are such that most of the radiation stems from the outer
regions of the soliton near the final points, described with equation (46), and is radiated into a
cone with the polar angle θ � �−1

b . This outcome is coincident with the well-known fact that
the radiation of relativistic particles is generally concentrated in this rather small solid angle.

However, there arise significant differences relative to synchrotron radiation: the
azimuthal variation is different. For one particle, the viewing angle effect results in radiation
orientated mostly perpendicular to the electron trajectory. This orientation persists even for a
whole ensemble of electrons. The polarization depends on the azimuthal angle of the line of
sight and the electron trajectory given by the soliton plane with perpendicular polarization at
particular angles and unveils a major difference to synchrotron radiation by having a parallel
polarization as well.

The Faraday effect allows the observer to measure extraterrestrial magnetic fields, e.g., in
other galaxies. For the soliton, the Faraday effect has a dependence that is related closely to
the form of the magnetic field of the soliton.

Overall, we have presented a fundamental treatment of the radiation produced by the
interaction of electrons with solitary waves that can arise in the unmagnetized plasma of an
astrophysical relativistic jet. The value of this model is that one can bypass the question of
the origin of the magnetic fields, which are a fundamental prerequisite needed for synchrotron
radiation. More detailed numerical computations could avoid the separation of at least three
solutions for the differential intensity spectrum given in equation (43), (45) and (46). Likewise,
more detailed numerical simulations of the soliton–electron interaction may emphasize more
the differences between synchrotron and soliton radiation.
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Appendix A. Evaluation of the integrals Ĵ

A.1. General reduction

In equation (25),

Ĵ =
∫ ∞

−∞
dt �β(t) exp[i�(t)] ≡ ��J , (A.1)

with � = (
Vb�

2
b

/
c2
)
, one first performs a substitution to the coordinate ζ via

ζ = (t/�) − Z0 in −ζend � ζ � ζend. (A.2)

Thus, t = (ζ + Z0)�.
Then one can transform the integral ignoring the constant phase ϕ0 = exp[−iω(�n · �r0/c)]

and with l = (1 − �n · �β0)� (note that ��β = 0 for |ζ | > ζend) to obtain

�J/ϕ0 =
∫ ∞

−∞
dζ �β(ζ ) exp[i�(ζ)]/ϕ0

=
∫ ζend

−ζend

dζ(�β0 + ��β(ζ )) exp[iωlζ − i��(ζ)]
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+ �β0

(∫ −ζend

−∞
dζ exp[iωlζ − i��(ζ)] +

∫ ∞

ζend

dζ exp[iωlζ − i��(ζ)]

)
≡ �j . (A.3)

With ��(ζ � −ζend) = 0 and ��(ζ � ζend) = ��(ζend) 	= 0 for the last two integrals in
equation (A.3), one has∫ −ζend

−∞
dζ exp[iωlζ − i��(ζ)] +

∫ ∞

ζend

dζ exp[iωlζ − i��(ζ)]

= exp[−iωlζend]/(iωl) − exp[−i��(ζend)] exp[iωlζend]/(iωl)

= −(2/ωl) exp[−i��(ζend)/2] sin[ωlζend − ��(ζend)/2] ≡ −S. (A.4)

With the same substitution t ′ = (ζ ′ + Z0)� in

�� = ω

∫ t

−∞
dt ′[nx�βx(t

′) + ny�βy(t
′)]

= ω�

∫ ζ

−ζend

dζ ′[nx�βx(ζ
′) + ny�βy(ζ

′)], (A.5)

one obtains

�j ≡ �j 1 + �j 2, (A.6)

with one term involving the constant velocity �β0 and one term involving the difference vector
��β, so that

�j 1 = �β0

∫ ζend

−ζend

dζ exp[iωlζ − i��(ζ)] − �β0S, (A.7)

�j 2 =
∫ ζend

−ζend

dζ exp[iωlζ − iω��(ζ)](�βx(ζ ),�βy(ζ ), 0) ≡ (jx, jy, 0). (A.8)

A.2. Considerations on |�n · �j |2 and �j⊥ · �j⊥
∗

For equation (26), one has to evaluate �j⊥ · �j⊥
∗
. Consider �n · �j = j‖,

j‖ ≡ (�n · �β0)(I1 − S) + I2, (A.9)

with the two integrals

I1 =
∫ ζend

−ζend

dζ exp[iωlζ − i��(ζ)], (A.10)

I2 = (�n · �j 2) =
∫ ζend

−ζend

dζ exp[iωlζ ](nx�βx(ζ ) + ny�βy(ζ ))

× exp

[
−iω�

∫ ζ

−ζend

dζ ′(nx�βx(ζ
′) + ny�βy(ζ

′))
]

. (A.11)

The second term, I2, can be expressed in terms of I1 by partial integration:

I2 = nxjx + nyjy = − i

ω�

∫ ζend

−ζend

dζ exp[iωlζ ]
d

dζ
exp[−i��(ζ)]

= −(2/ω�) exp[−i��(ζend)/2] sin[ωlζend − ��(ζend)/2] + (l/�)I1

= (l/�)(I1 − S). (A.12)
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Using equations (A.9) and (A.12) for the parallel parts of the integrals in equation (26), one
can write

j‖ = I1 − S = (�/l)(�n · �j 2), (A.13)

because (�n · �β0) + (l/�) = 1.
With Equations (A.7) and (A.13) for �j 1, one then obtains

�j 1 = �β0(I1 − S) = (�/l)�β0(�n · �j 2). (A.14)

Thus, one has to solve only the integrals ��(ζend), jx and jy to obtain �j⊥. Note that jx and
jy are symmetric, so the evaluation of jy automatically yields the solution for jx by replacing
the y subscripts by x subscripts.

Then, with �j = (�/l)�β0(�n · �j 2) + �j 2 and (�/l) = (1 − (�n · �β0))
−1, one can write

�j⊥ = �j − �n(�n · �j) = �j 2 − �n − �β0

1 − (�n · �β0)
(�n · �j 2), (A.15)

yielding

�j⊥ · �j⊥
∗ =

∣∣∣∣∣�j 2 − �n − �β0

1 − (�n · �β0)
(�n · �j 2)

∣∣∣∣∣
2

= |�j 2|2 − (�n − �β0) · [�j∗
2(�n · �j 2) + �j 2(�n · �j∗

2)]

1 − (�n · �β0)
+

|�n − �β0|2
(1 − (�n · �β0))2

|�n · �j 2|2. (A.16)

A.3. Behavior of |�j⊥|2

With the definitions

Bx = �bβ0,x = �x − zaR
2Amax

E⊥[R2Amax]
< 1 By = �bβ0,y = �y

E⊥[R2Amax]
< 1 (A.17)

and the vectors �n = (sin θ cos φ, sin θ sin φ, cos θ), �β0 = (Bx/�b, By/�b,
(
1 − �−2

b

)1/2
) and

�j = (jx, jy, 0), one has for equation (A.16):

| �j⊥|2 = [(
cos θ −

√
1 − �−2

b

)2|cos φjx + sin φjy |2

+
∣∣((1 −

√
1 − �−2

b cos θ
)

sin φ − sin θBy/�b

)
jx

− ((
1 −

√
1 − �−2

b cos θ
)

cos φ − sin θBx/�b

)
jy

∣∣2]
× (

1 −
√

1 − �−2
b cos θ − sin θ(cos φBx + sin φBy)/�b

)−2
. (A.18)

Series expansion for large �b yields

| �j⊥|2 = |jx |2 + |jy |2 +
sin θ

(1 − cos θ)�b

|(cos φjx + sin φjy)(Bxjx + Byjy)| + O
(
�−2

b

)
. (A.19)

This expansion is valid as long as sin θ/[(1 − cos θ)�b] � 1, which for small angles is

θ � 2/�b. (A.20)

Otherwise, for small angles one can approximate sin θ � θ, cos θ � 1 leading to

| �j⊥|2 = |jx |2 + |jy |2 +
θ

�b(1 − (
1 − �−2

b

)1/2 |(cos φjx + sin φjy)(Bxjx + Byjy)| + O(θ2).

(A.21)
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This result has a constraint given by θ
/[

�b(1 − (
1 − �−2

b

)1/2] � 1, which can be simplified
for large �b to

θ � 1/(2�b). (A.22)

Thus, one has

| �j⊥|2 � |jx |2 + |jy |2 (A.23)

except for the interval θ ∈ [1/(2�b), 2/�b], where one can approximate θ � arcsin[1/�b] + ε

leading to

| �j⊥|2 = (sin φ − By)
2|jx |2 + (cos φ − Bx)

2|jy |2 − (cos φ − Bx)(sin φ − By)(jxj
∗
y + j ∗

x jy)

[1 − (cos φBx + sin φBy)]2

+O(ε2). (A.24)

Therefore, equation (A.24) may reach values substantially larger than equations (A.19)
and (A.21).

Appendix B. The motion of the electrons

Write u = A/Amax as the normalized vector potential. Then u satisfies the equation (see in
[17])

(du/dz)2 = (1 − u)(u − R2)/u, (B.1)

where (du/dz) has a peak value on u = R. Furthermore, one has u(z = 0) = 1 and
u(z = zend) = R2. The solution to equation (B.1) cannot be written in a closed analytical
form; thus, one needs good approximations for u(z). Because u(z) is symmetric in z, in
1 � u � R choose

u = 1 − bz2 (B.2)

to obtain from equation (B.1), to order z2,

b = (1 − R2)/4. (B.3)

Then from the peak value (occurring on u = R), one finds the locations zmax as

z(u = R) = ± 2

(1 + R)1/2
≡ ±zmax, (B.4)

with zmax > 0. Similarly, one can write in R � u � R2

u = R2(1 + a(zend − |z|)2), (B.5)

which, when used in equation (B.1), yields

a = (1 − R2)/(4R4), (B.6)

to order z2. Because u(z = zmax) = R and u = R2 on |z| = zend, one finds the locations zend

as

z(u = R2) = ±[zmax + 2R3/2(1 + R)−1/2] = ±2
1 + R3/2

(1 + R)1/2
≡ ±zend, (B.7)

with zend > zmax > 0. Hence, one has two regimes:

u(z) = 1 − (1 − R2)z2/4 ≡ 1 − bz2

in 0 � |z| � zmax,

u(z) = R2 + (1 − R2)(zend − |z|)2/4R2 ≡ R2 + R2a(zend − |z|)2

in zmax � |z| � zend.

(B.8)
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Now consider ��β from equations (19a) and (19b) with

E⊥[A] = (
1 + � 2

y + (�x − zaA)2)1/2
. (B.9)

Because u = A/Amax is calculated to the quadratic order in z in the two regimes, �βx and
�βy are also calculated to the quadratic order. The development is straightforward, albeit
tedious. In zmax � |z| � zend, one has for the differences in equations (21a) and (21b)

1

E⊥[A]
− 1

E⊥[R2Amax]
= zaR

2Amax(�x − zaR
2Amax)

E3
⊥[R2Amax]

a(zend − |z|)2, (B.10)

A

E⊥[A]
− R2Amax

E⊥[R2Amax]
=

(
1 +

zaR
2Amax(�x − zaR

2Amax)

E2
⊥[R2Amax]

)
R2Amax

E⊥[R2Amax]
a(zend − |z|)2;

(B.11)

thus, �βx,�βy are known to order z2 = ζ 2/L2. In 0 � |z| � zmax, one has the differences

1

E⊥[A]
− 1

E⊥[R2Amax]
= 1

E⊥[Amax]
− 1

E⊥[R2Amax]
− zaAmax(�x − zaAmax)

E3
⊥[Amax]

bz2, (B.12)

A

E⊥[A]
− R2Amax

E⊥[R2Amax]
= Amax

E⊥[Amax]
− R2Amax

E⊥[R2Amax]

−
(

1 +
zaAmax(�x − zaAmax)

E2
⊥[Amax]

)
Amax

E⊥[Amax]
bz2. (B.13)

Thus, �βx and �βy are also known to order z2 = ζ 2/L2. In summary, one has

��β ≡ ��β0(ζend − |ζ |)2 in ζmax � |ζ | � ζend,

≡ ��β1 − ��β2ζ
2 in 0 � |ζ | � ζmax,

(B.14)

with the factors

�β0,x = −1 − R2

4L2R2

zaAmax
(
1 + � 2

y

)
�bE

3
⊥[R2Amax]

, (B.15)

�β0,y = 1 − R2

4L2R2

zaAmax�y(�x − zaR
2Amax)

�bE
3
⊥[R2Amax]

, (B.16)

�β1,x = 1

�b

(
�x − zaAmax

E⊥[Amax]
− �x − zaR

2Amax

E⊥[R2Amax]

)
, (B.17)

�β1,y = �y

�b

(
1

E⊥[Amax]
− 1

E⊥[R2Amax]

)
, (B.18)

�β2,x = −1 − R2

4L2

zaAmax
(
1 + � 2

y

)
�bE

3
⊥[Amax]

, (B.19)

�β2,y = 1 − R2

4L2

zaAmax�y(�x − zaAmax)

�bE
3
⊥[Amax]

. (B.20)

Note that |�β0,x | � |�β2,x | and |�β0,y | � |�β2,y | because R � 1. For later purposes, one
needs to develop the factors for the case |zaAmax| � max{1, |�j |} with j ∈ {x, y, z}, but

22



J. Phys. A: Math. Theor. 42 (2009) 105501 U Schaefer-Rolffs et al

note that |zaR
2Amax| = |(R′)2/(zaAmax)| � max{1, |�j |}. First, consider the perpendicular

energy. One obtains

E⊥[Amax]−m = [
1 + � 2

y + (�x − zaAmax)
2]−m/2

� 1

|zaAmax|m
[

1 +
m�x

zaAmax
+

m
[
(m + 1)� 2

x − (
1 + � 2

y

)]
2(zaAmax)2

]
(B.21)

and

E⊥[R2Amax]−m � 1

Em
0

[
1 +

m�xR
′

zaAmaxE0
+

m
[
(m + 1)� 2

x − (
1 + � 2

y

)]
(R′)2

2(zaAmax)2E2
0

]
, (B.22)

with E2
0 = 1 + � 2

x + � 2
y .

Thus one has approximations for the components (20a), (20b) and (B.15)–(B.20) which
can be used later (assuming that zaAmax > 0):

Bx � �x

E0
, (B.23)

By � �y

E0
, (B.24)

�β0,x � − 1

4L2(R′)2�b

(zaAmax)
3

1 + � 2
y

E3
0

, (B.25)

�β0,y � 1

4L2(R′)2�b

(zaAmax)
3 �x�y

E3
0

, (B.26)

�β1,x � − 1

�b

(
1 +

�x

E0

)
= −1 + Bx

�b

, (B.27)

�β1,y � − 1

�b

�y

E0
= −By

�b

, (B.28)

�β2,x � − 1

4L2�b

1

(zaAmax)2

(
1 + � 2

y

)
, (B.29)

�β2,y � − 1

4L2�b

1

zaAmax
�y. (B.30)

Note for later relevance the various powers of zaAmax of these components.

Appendix C. Approximations for the integral M±
n [Aj; ψ1, j , ψ3, j]

For clarity, in this section the index j is omitted for the variables Aj , ψ1,j and ψ3,j , because
the results do not depend on the regimes of the soliton in detail. Because one is interested in
the ranges with low frequency (ω → 0) and high frequency (ω → ∞), and ψ1, |ψ3| ∝ ω,
one has to consider the cases ψ1, |ψ3| → 0 and ψ1, |ψ3| → ∞. Note that |ψ3| → 0 even for
high ω for a vanishing scalar product |�n · ��β0,2|. Thus, one has to investigate three cases.

C.1. ψ1, |ψ3| → 0

Beginning with the definition of M±
n [A;ψ1, ψ3] with ζ̄ = Aw and A = const, one obtains∫ A

0
dζ̄ ζ̄ n exp[i(ψ1ζ̄ ± |ψ3|ζ̄ 3)] = An+1

∫ 1

0
dw wn exp[iA(ψ1w ± A2|ψ3|w3)]
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� An+1
∫ 1

0
dw wn = An+1/(n + 1). (C.1)

Note that this approximation is valid only for ψ1A � 1 and |ψ3|A3 � 1 leading (with
definitions (38a) and (38b)) to conditions for the frequency given by

ω � ωlow ≡ min[(ζc/A)ωc, 3(ζc/A)3ωc]. (C.2)

C.2. ψ1, |ψ3| → ∞
Here, one has ψ1A � 1 and |ψ3|A3 � 1 for |�n · ��β0,2| � 0. Thus a lower limit to the
frequency is, in analogy to the previous subsection, given by

ω � ωhigh ≡ max[(ζc/A)ωc, 3(ζc/A)3ωc]. (C.3)

Perform the substitution ζ̄ = (ψ1/|ψ3|)1/2w, yielding

(ψ1/|ψ3|)−(n+1)/2M±
n [A;ψ1, ψ3] =

∫ B

0
dw wn exp[ik(w ± w3)]

=
∫ B

0
dw exp[�(w)] ≡ N±

n [B; k], (C.4)

where k ≡ (
ψ3

1

/|ψ3|
)1/2 ∝ ω,B ≡ A(ψ1/|ψ3|)−1/2, and

�(w) = ik(w ± w3) + n ln[w]. (C.5)

Because k ∝ ω, the integrand oscillates rapidly for almost all values of w except around the
stationary phase points wsp where the first derivation of �(w) has a zero. Hence it is justified
to approximate the integral through a Taylor expansion around the points wsp, which are given
through �′(wsp) = ik

(
1 ± 3w2

sp

)
+ (n/wsp) = 0. One can approximate each of the cases in

turn.

C.2.1. 1 + 3w2
sp = (in/kwsp). Because the integrand has no singularity, one can

evaluate the integral N+
n [B; k] in the complex plane by a contour integral containing wsp.

Because k � 1, one has the solution (to second order) w±
sp � ±i/31/2 − (in/2k) yielding

�
(
w±

sp

) � ∓2k/33/2 + n ln
[
w±

sp

]
. One has to choose the upper signed root, because the lower

sign leads to an integrand > 1. After Taylor expansion around w+
sp, leading to

�(w) � �
(
w+

sp

) − (2 · 31/2k − 3n)
(
w − w+

sp

)2/
2 (C.6)

and, further, with integration from −∞ to ∞, one has

N+
n [B; k] � (2π/(2 · 31/2k − 3n))1/2(i/31/2)n exp[−2k/33/2]

� (π/31/2k)1/2(i/31/2)n exp[−2k/33/2]. (C.7)

C.2.2. 1 − 3w2
sp = (in/kwsp). Here, the individual steps are almost the same. Because

k � 1, the values of wsp are located almost on the real axis and therefore dominate the value
of the integral N−

n . Hence, it is of importance to determine whether �[wsp] lies between the
integral endpoints. One has to choose the root with �[wsp] > 0. There is the constraint
�[wsp] � B (i.e. the phase point lies in the integral range) yielding

A2(ψ1/|ψ3|)−1 � 1/3 ↔ A2 � ζ 2
c . (C.8)

Note that for each particle ζc depends on the particle velocity and, furthermore, on the line of
sight to the observer, so one cannot exclude any possibility. If constraint (C.8) is not fulfilled,
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the integral N−
n is small in comparison with the case where the constraint is fulfilled. Hence,

one can neglect N−
n for those particles with A < ζc. When inequality (C.8) is satisfied one

has the stationary phase point wsp � 1/31/2 − (in/2k), yielding

�(w) � �(wsp) − (2 · 31/2ik + 3n)(w − wsp)
2/2 (C.9)

and

N−
n [B; k] � (2π/(2 · 31/2ik + 3n))1/2(1/31/2)n exp[2ik/33/2]

� (π/31/2k)1/2 e−iπ/4(1/31/2)n exp[2ik/33/2]. (C.10)

C.3. ψ1 → ∞, |ψ3| → 0

Even for high ω it is possible that |ψ3| → 0, namely in the neighborhood of the angles where
S2 ≡ |�n · ��β0,2| � 0. For very high ω, it may be that there is only a very small range where
one has ψ1 → ∞ and |ψ3| → 0, but that range has to be considered. The function S2 is
examined in detail in the following appendix. One has∫ A

0
dζ̄ ζ̄ n exp[i(ψ1ζ̄ ± |ψ3|ζ̄ 3)] =

∫ A

0
dζ̄ ζ̄ n exp[iψ1ζ̄ (1 ± (|ψ3|/ψ1)ζ̄

2)]

�
∫ A

0
dζ̄ ζ̄ n exp[iψ1ζ̄ ] = ∂n

in∂ψn
1

∫ A

0
dζ̄ exp[iψ1ζ̄ ]

= ∂n

in∂ψn
1

(exp[iψ1A] − 1)/(iψ1)

� (An/iψ1) exp[iψ1A] − δn0/(iψ1), (C.11)

where in the last step ψ1 → ∞ and δn0 is the Kronecker delta. Now one has to estimate the
limits of this approximation. One has the constraints ψ1A � 1 and |ψ3|A3 � 1. The first
condition gives

ω � ω∗
high ≡ (ζc/A)ωc = 1/(�A(1 − �n · �β0)), regime (a)

= 1/(�A(1 − �n · �β0 − �n · ��β1)), regime (b), (C.12)

whereas the second condition yields

ω � 3(ζc/A)3ωc = 1/(�A3|�n · ��β0,2|) → ∞, (C.13)

with |�n · ��β0,2| → 0. Thus, constraint (C.13) is not a constraint in the neighborhood of
|�n · ��β0,2| = 0 where equation (C.11) is valid.

Appendix D. The properties of the angular functions S1 and S2

D.1. The function S1[θ, φ, �b]

First, we consider the two functions

1 − �n · �β0 = 1 −
√

1 − �−2
b cos θ − sin θ

�b

cos φ�x + sin φ�y

E0
,

1 − �n · �β0 − �n · ��β1 = 1 −
√

1 − �−2
b cos θ − sin θ

�b

cos φ(�x − zaAmax) + sin φ�y

E⊥[Amax]
.

(D.1)

Note that the latter has been derived from definitions (20a), (20b), (B.17) and (B.18). Thus,
define

S1[θ, �b,�] = 1 −
√

1 − �−2
b cos θ − sin θ

�b

�[φ,�x,�y, zaAmax], (D.2)
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Figure D1. (a) Graph of the angular function S1[θ, �b = 10,�] (39) with the standard parameters
for �b, �x,y and zaAmax. Equation (D.1a) is shown as a dashed line here and in all subsequent
plots, while equation (D.1b) is represented by a solid line. (b) Oscillation of the minimum angle
θe (D.3) as a function of φ. The variation of equation (D.1a) is ten times magnified. (c) Minimum
of the angular function S1 (D.4) as a function of φ. Here, the variation of equation (D.1a) remains
unchanged in amplitude and thus is nearly invisible.

with |�| < 1 for all φ,�x,�y, zaAmax. S1 is depicted in figure D1(a) and has extrema at

θe = arctan
[
�
/(

�2
b − 1

)1/2]
+ kπ, k ∈ Z, (D.3)

with a minimum (for k = 0) at θe < θmax ≡ arctan
[(

�2
b − 1

)−1/2] = arcsin
[
�−1

b

]
. This

extremum leads (with �b � 1) to

S1,e[θe, �b,�] = 1 ∓
√

1 − 1 − �2

�2
b

�
{

(1 − �2)
/(

2�2
b

)
,

2 − (1 − �2)
/(

2�2
b

)
,

(D.4)

where the upper sign is for even k and the lower sign for odd k. Note from equation (D.3)
with k = 0 that the minimum of S1 oscillates around zero. Second, the amplitude is limited
by S1,e. But as θ is constrained to 0 � θ � π , we have only one maximum for � < 0 with
k = 1 and one minimum for � > 0 with k = 0. Variations of θe and S1,e are shown in
figures D1(b), (c). However, note that |�| < 1 always, so S1 > 0.

D.2. The function S2[θ, φ, �b]

Here we have to consider the two functions

|�n · ��β0| = sin θ

�b

1

4L2(R′)2

∣∣sin φ�x�y − cos φ
(
1 + � 2

y

)∣∣(zaAmax)
3

E3
0

,

|�n · ��β2| = sin θ

�b

1

4L2

|sin φ�y |
zaAmax

.

(D.5)

Both functions are combined analogous to equation (40):

S2[θ, �b,�] = sin θ

�b

�[φ,�x,�y, zaAmax]. (D.6)

Note that � � 0 because of the absolute values in equations (D.5). S2 has minima, S2 = 0
for θ = 0, π or � = 0. Furthermore, the maxima have the value S2[θ = π/2] = �/�b as
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Figure D2. (a) Graph of the angular function S2[θ, �b = 10, �](4L2) (40) as a function of θ .
Equation (D.5b) is shown as a solid line here and magnified by a factor of 102. (b) Graph of the
angular function S2(4L2) as a function of φ with θ = π/2. Again, equation (D.5b) is magnified
by a factor of 102. Thus, function (D.5a) is larger by about three orders of magnitude compared to
factor (D.5b).

shown in figures D2(a), (b). Note that function (D.5a) for regime (a) is about 103 times larger
than the counterpart in regime (b).

D.3. The ratio Sr ≡ S1/S2

The ratio

Sr = S1

S2
= 1 − (

1 − �−2
b

)1/2
cos θ − (sin θ/�b)�

(sin θ/�b)�
=

[
�b − (

�2
b − 1

)1/2
cos θ

]/
sin θ − �

�

(D.7)

is important for further calculations and is shown in figure D3(a). Its properties will be derived
in this subsection. The difference between the two solutions arise from the factor of magnitude
103 of the function S2 for the two regimes. One finds that Sr has a minimum at

θm = arccos
(
1 − �−2

b

)1/2 = arcsin �−1
b , (D.8)

independent of � or �, and is depicted in figure D3(b). The matching minimum of Sr is given
by

Sr [θm, �b] = (1 − �)/�, (D.9)

independent of �b. Note that, because |�| < 1, Sr > 0 always. Again, clear differences
between the two regimes are visible in figure D3(c).

Appendix E. The differential intensity spectrum for low frequencies ω → 0

Low frequencies ω → 0 lead to small parameters ψ1,j , |ψ3,j | → 0. Thus, one can use the
approximation (C.1),

Mn[Aj ;ψ1,j , ψ3,j ] = An+1
j

/
(n + 1), (E.1)

to evaluate the integral (37) to lowest order in ω:

jy � �β0,y(ζend − ζmax)
3/3(exp[−iωlζend] + exp[iωlζend − i��(ζend)])

+
[ (

�β1,y − �β2,yζ
2
max

)
2ζmax + 2�β2,yζmax(2ζmax)

2/2 − �β2,y(2ζmax)
3/3

]
× exp[−iωlζmax − iω�(�n · ��β0)(ζend − ζmax)

3/3]

� 2�β0,y(ζend − ζmax)
3/3 + 2�β1,yζmax − 2�β2,yζ

3
max

/
3 = const, (E.2)
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Figure D3. (a) Graph of the angular function Sr [θ, �b = 10, �, �]/(4L2) = S1/[S2(4L2)]. The
difference between the two solutions arises from the function S2. (b) The minimum angle θm

(D.8) as a function of �b . (c) Minimum of the angular function Sr/(4L2) from equation (D.9) as
a function of φ.

with the phase factor (33) and in analogy

jx � 2�β0,x(ζend − ζmax)
3/3 + 2�β1,xζmax − 2�β2,xζ

3
max

/
3 = const, (E.3)

with the subscript replacement.
Further, because ζend = Lzend and ζmax = Lzmax are functions of R = R′/(zaAmax),

analytical approximations can be found:

zmax � 2(1 − R) + (π/2)R8/7, zend � 2(1 − R) + πR8/7, (E.4)

leading to zend − zmax = (π/2)(R′)8/7/(zaAmax)
8/7 and zmax � 2 for zaAmax � 1. Using the

approximations (B.23)–(B.30), one obtains to lowest order in zaAmax

jx � −2L

�b

(1 + Bx) jy � −2L

�b

By. (E.5)

With equations (A.23) and (A.24), one has

�j⊥ · �j⊥
∗ � 8L2

�2
b

⎧⎪⎨
⎪⎩
[
(sin φ − By)(1 + Bx) − (cos φ − Bx)By

1 − (cos φBx + sin φBy)

]2

if 1/(2�b) � θ � 2/�b

1 + 2Bx + B2
x + B2

y otherwise

≡ ω−2
0

/
�2 = const. (E.6)

Thus, the spectrum for one particle (remembering that ��(ζend)/ω does not depend on ω; see
equation (33)) is

d2I

dω d�
� e2

4π2c

(
ω

ω0

)2

, ω � ωlow, (E.7)

with

ω0 � �b

23/2�L

⎧⎪⎨
⎪⎩
∣∣∣∣ 1 − (cos φBx + sin φBy)

(sin φ − By)(1 + Bx) − (cos φ − Bx)By

∣∣∣∣ if 1/(2�b) � θ � 2/�b

(1 + 2Bx + B2
x + B2

y )
−1/2 otherwise.

(E.8)
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E.1. Calculation of the limiting frequency ωlow

From inequality (C.2), one has to find the frequency limit. Because there are two regimes (a)
and (b), one has overall four terms that have to be considered:

ω � ωlow = min[(ζc,j /Aj )ωc,j , 3(ζc,j /Aj )
3ωc,j ] = (ζc,j /Aj )ωc,j min[1, 3(ζc,j /Aj )

2].

(E.9)

First, concentrate on the ratio

�j = 3

(
ζc,j

Aj

)2 /
1. (E.10)

With ζ = zL, one has for regime (b) with zaAmax large

�b = 3Sr,b

4L2z2
max

� 3Sr,b[θm, �b]

16L2
� 3

4

zaAmax

�y

∣∣∣∣1 + cos φ

sin φ
− �y

zaAmax

∣∣∣∣ � 1 (E.11)

except in a region φ∗ � π . A detailed calculation of the root in equation (E.11) yields

φ∗ � 2 arctan

[
zaAmax/�y

1 ± 4/3

]
� π − 2

(
1 ± 4

3

)
�y

zaAmax
. (E.12)

Thus the regime �φ, where �b < 1, is

�φ � 16

3

�y

zaAmax
→ 0 (E.13)

and so �b � 1 for almost all φ.
In regime (a), one has

�a = 3Sr,a

L2(zend − zmax)2

� 48

π2(R′)2/7
(zaAmax)

−5/7E2
0

∣∣∣∣E0
[
�b − (

�2
b − 1

)1/2
cos θ

]/
sin θ − (cos φ�x + sin φ�y)

sin φ�x�y − cos φ
(
1 + � 2

y

) ∣∣∣∣.
(E.14)

This expression has to be considered twice, first in the regime θ � arcsin �−1
b where Sr has

its minimum and outside otherwise. The first case yields (with pj � zaAmax)

�a � 48

π2(R′)2/7
(zaAmax)

−5/7E2
0

∣∣∣∣∣ E0 − (cos φ�x + sin φ�y)

sin φ�x�y − cos φ
(
1 + � 2

y

)
∣∣∣∣∣

� 48

π2(R′)2/7
(zaAmax)

−5/7 E3
0∣∣sin φ�x�y − cos φ

(
1 + � 2

y

)∣∣ < 1. (E.15)

However, equation (E.15) is fulfilled only if∣∣sin φ∗�x�y − cos φ∗
(
1 + � 2

y

)∣∣ � 48

π2(R′)2/7
(zaAmax)

−5/7E3
0 → 0. (E.16)

The equality in equation (E.16) gives the root

φ0 � arctan

[
1 + � 2

y

�x�y

]
(E.17)
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and the boundaries of the constraint (E.15) can be obtained with the ansatz φ∗ � φ0 + �φ/2
with �φ � 1 leading to

�φ � 96

π2(R′)2/7

1 + � 2
x + � 2

y((
1 + � 2

y

)2
+ � 2

x � 2
y

)1/2︸ ︷︷ ︸
O(1)

(
1 + � 2

x + � 2
y

)1/2

zaA
5/7
max︸ ︷︷ ︸

�1

→ 0. (E.18)

Thus, near θ � arcsin �−1
b one has �a < 1 for almost all φ.

In the other case, the term of order �b is the leading term in equation (E.14), with

�a � 48

π2(R′)2/7

�b

(zaAmax)5/7

E3
0∣∣sin φ�x�y − cos φ

(
1 + � 2

y

)∣∣︸ ︷︷ ︸
�1

1 − (
1 − �−2

b

)1/2
cos θ

sin θ︸ ︷︷ ︸
�1

.

(E.19)

Thus, for �a > 1 one has the constraint

zaAmax <

(
48�b

π2(R′)2/7

)7/5

� 9.16
�

7/5
b

(R′)2/5
. (E.20)

Because �b is much greater than unity in astrophysical jets, equation (E.20) is fulfilled in
the scenarios considered and therefore �a > 1. In combination, we have �a < 1 near
θ � arcsin �−1

b and �a > 1 elsewhere. In short, we approximate to first order that �j > 1
completely for regimes (a) and (b), and one has the constraint

ω � ωlow = (ζc,j /Aj )ωc,j = (�Aj S1)
−1. (E.21)

Appendix F. The differential intensity spectrum for high frequencies ω → ∞
At first, one has to take into account that there are two different approximations of the functions
M±

n [Aj ;ψ1,j , ψ3,j ] of equation (37) as done in appendices C.2 and C.3. For |�n· ��β0,2| � 0 one
has equation (C.11), whereas otherwise one has to use equations (C.7) and (C.10). Once exact
formulae are given, one can distinguish at which angles one has to change the approximations.

F.1. Approximation of the functions M±
n [Aj ;ψ1,j , ψ3,j ] for |�n · ��β0,2| � 0

The first step is to approximate the functions M±
n [Aj ;ψ1,j , ψ3,j ] of equation (37) in the

manner of appendix C.2. In general, as mentioned before, there are two functional regimes
for these Mn functions: (a) the outer regimes of the soliton (from ±ζmax to ±ζend) with
Aa = ζend − ζmax, ψ1,a = ωl and ψ3,a = −ω�(�n · ��β0)/3; (b) the inner region (from −ζmax

to ζmax) with Ab = 2ζmax, ψ1,b = ω(l − �(�n · ��β1)) and ψ3,b = ω�(�n · ��β2)/3. Note that
in both regimes, ψ3 can be greater than or less than zero depending on whether (�n · ��β0,2) is
greater than or less than zero. One finds

sin φ(�x�y) > cos φ
(
1 + � 2

y

)
for (�n · ��β0) > 0,

sin φ�y < −cos φ
(
1 + � 2

y

)/
(zaAmax) → 0 for (�n · ��β2) > 0,

(F.1)

respectively. The two regions yield two different forms for the characteristic length and
frequency:

ζc,a ≡
(

1 − �n · �β0

|�n · ��β0|

)1/2

= S1/2
r,a , (F.2)
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ζc,b ≡
(

1 − �n · �β0 − �n · ��β1

|�n · ��β2|

)1/2

= S
1/2
r,b , (F.3)

ωc,a ≡ 1

�

(
|�n · ��β0|

(1 − �n · �β0)3

)1/2

= 1

�

1

S1,aS
1/2
r,a

, (F.4)

ωc,b ≡ 1

�

(
|�n · ��β2|

(1 − �n · �β0 − �n · ��β1)3

)1/2

= 1

�

1

S1,bS
1/2
r,b

. (F.5)

Thus, one always has the approximations

M+
n [Aj ;ψ1,j , ψ3,j ] � π1/2ψ

−1/4+n/2
1,j (3|ψ3,j |)−1/4−n/2 exp[−2k/33/2 + inπ/2], (F.6)

M−
n [Aj ;ψ1,j , ψ3,j ] � π1/2ψ

−1/4+n/2
1,j (3|ψ3,j |)−1/4−n/2 exp[2ik/33/2 − iπ/4]. (F.7)

There are, then, two cases to consider: (1) for (�n · ��β0,2) > 0 one has for region (a)

M−
n [Aa;ψ1,a, ψ3,a] � (ω/πωc,a)

−1/2ζ n+1
c,a exp[(2iω/3ωc,a) − iπ/4] (F.8)

and for region (b)

M+
n [Ab;ψ1,b, ψ3,b] � (ω/πωc,b)

−1/2ζ n+1
c,b exp[−(2ω/3ωc,b) + inπ/2]. (F.9)

(2) For (�n · ��β0,2) < 0, one obtains for regime (a)

M+
n [Aa;ψ1,a, ψ3,a] � (ω/πωc,a)

−1/2ζ n+1
c,a exp[−(2ω/3ωc,a) + inπ/2] (F.10)

and regime (b) simplifies to

M−
n [Ab;ψ1,b, ψ3,b] � (ω/πωc,b)

−1/2ζ n+1
c,b exp[i(2ω/3ωc,b) + iπ/4]. (F.11)

Because of the need to satisfy inequality (C.8), one finds that M−
n is negligible when

ζ 2
c,j > A2

j ⇔ (ζc,j /Aj )
2 > 1. (F.12)

This ratio differs from the ratio (E.10) only by a factor of 3. Because one had the result that
�j � 1 practically for all cases one can apply the result from appendix E.1 here to separate
the considerations. Mostly, M−

n can be neglected except for θ � arcsin �−1
b where �a � 1.

Here, the integrals M−
n apply, which has no damping exponential term for high frequencies.

This case is considered subsequently in this paper.

F.2. Solution for high frequencies

With the phase factor

1/� ≡ lζmax + �(�n · ��β0)(ζend − ζmax)
3/3 (F.13)

and the definition

ζb,y ≡ (
�β1,y − �β2,yζ

2
max

)
ζc,b + 2i�β2,yζmaxζ

2
c,b + �β2,yζ

3
c,b, (F.14)

one has for jy , by neglecting all M−
n and for case (1)

jy � ζb,y(ω/πωc,b)
−1/2 exp[−(2ω/3ωc,b) − iω/�], (F.15)

containing only terms of regime (b). The other case (2) is given by

jy � −2�β0,y(ω/πωc,a)
−1/2ζ 3

c,a exp[−(2ω/3ωc,a) − i��(ζend)/2]

× cos[−ωlζend + ��(ζend)/2] (F.16)
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and has only terms of regime (a). Note that jx can be treated in analogy. Now one maintains
only the terms of leading order in zaAmax (in the parameters �β, ζc and ωc). One finds that in
regime (b) one has terms with (zaAmax)

1/4, whereas in regime (a) the leading term is of order
(zaAmax)

−3/4. Thus, one can concentrate on regime (b) and case (1) yielding

jx � �β1,xζc,b(ω/πωc,b)
−1/2 exp[−(2ω/3ωc,b) − iω/�],

jy � (
�β1,yζc,b + �β2,yζ

3
c,b

)
(ω/πωc,b)

−1/2 exp[−(2ω/3ωc,b) − iω/�].
(F.17)

In each term of equation (A.16), there emerge the products of jx,y and j ∗
x,y , namely

|jx |2 � π�β2
1,xζ

2
c,bωc,b exp[−(4ω/3ωc,b)]/ω,

|jy |2 � π
(
�β1,yζc,b + �β2,yζ

3
c,b

)2
ωc,b exp[−(4ω/3ωc,b)]/ω.

(F.18)

Because in this part the neighborhood of θ = arcsin �−1
b � �−1

b is omitted, one can use
equation (A.23) for equation (A.16) leading to

�2 �j⊥ · �j⊥
∗ = (ω/πωc,b)

−1ω−2
B exp[−(4ω/3ωc,b)], (F.19)

where

ω−2
B ≡ �2[�β2

1,x +
(
�β1,y + �β2,yζ

2
c,b

)2]
ζ 2
c,b. (F.20)

This solution can be simplified to

ωB = 1

�

(
S2

S3
1

)1/2
[(

1

sin θ sin φ
+

1

�bS1

�y

E0

)2

+
1

�bS1

(
1 +

�x

E0

)2
]−1/2

= ωc,b

[(
1

sin θ sin φ
+

1

�bS1

�y

E0

)2

+
1

�2
bS

2
1

(
1 +

�x

E0

)2
]−1/2

. (F.21)

Thus, the spectrum for one particle is in the leading case (1) and regime (b):

d2I

dω d�
� e2

4π2c

[(
1

sin θ sin φ
+

1

�bS1

�y

E0

)2

+
1

�2
bS

2
1

(
1 +

�x

E0

)2
]

πω

ωc,b

exp[−(4ω/3ωc,b)]

(F.22)

and afar from the minimum of S1 (at θ � arcsin �−1
b ), one can approximate

d2I

dω d�
� e2

4π2c

πω

ωc,b sin2 θ sin2 φ
exp[−(4ω/3ωc,b)]. (F.23)

Now returning to the case with θ � arcsin �−1
b , one has to basically consider M−

n of
regime (a) and case (1) due to appendix E.1. This approximation leads to

jy � 2�β0,y(ω/πωc,a)
−1/2ζ 3

c,a exp[−i��(ζend)/2]

× cos[−(2ω/3ωc,a) − ωlζend + ��(ζend)/2 − π/4], (F.24)

and jx is obtained in analogy. Again, the products of jx,y and j ∗
x,y have to be calculated for

equation (A.16), yielding (after averaging over the cos2 terms)

|jx |2 � 2π�β2
0,xζ

6
c,aωc,a/ω,

|jxj
∗
y | � 2π�β0,x�β0,yζ

6
c,aωc,a/ω,

|jy |2 � 2π�β2
0,yζ

6
c,aωc,a/ω.

(F.25)

Because equation (A.24) is valid, one has as a result

�2| �j⊥|2 = (ω/πωc,a)
−1ω−2

A , (F.26)
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where

ω−2
A ≡ 2�2

(
(sin φ − By)�β0,x − (cos φ − Bx)�β0,y

1 − (cos φBx + sin φBy)

)2

ζ 6
c,a. (F.27)

This result can be simplified to

ωA = 1

�

(
S2

S3
1

)1/2 sin θ |sin φ|
21/2

|sin φ�x�y − cos φ
(
1 + � 2

y

)|(1 − (cos φBx + sin φBy))

|(sin φ − By)
(
1 + � 2

y

) − (cos φ − Bx)�x�y |
� ωc,a

|cos φ|
21/2�b

, (F.28)

leading to the result

d2I

dω d�
� e2

4π2c

2π�2
bω

ωc,a cos2 φ
. (F.29)

F.3. Calculation of the limiting frequency ωhigh

Similar to the case for low frequencies, one has to investigate the condition

ωhigh = max{(ζc,j /Aj )ωc,j , 3(ζc,j /Aj )
3ωc,j } = (ζc,j /Aj )ωc,j max{1, 3(ζc,j /Aj )

2}, (F.30)

with the same ratio �j = 3(ζc,j /Aj )
2. Because it is known that �j > 1 except for θ � �−1

b ,
one has for equation (F.23)

ω � ωhigh = 3(ζc,b/Ab)
3ωc,b = 3

/(
�A3

bS2,b

)
. (F.31)

First, note that ωhigh could increase to infinity, but only for |ny | → 0. However,
this behavior corresponds with |�n · ��β2| → 0, and then the original approximation of
appendix C.2 is not valid. Then one has to turn to the approximation of appendix C.3,
which is done subsequently. For equation (F.29), one finds

ω � ωhigh = (ζc,a/Aa)ωc,j = (�AaS1,a)
−1. (F.32)

F.4. Approximation of the functions M±
n [Aj ;ψ1,j , ψ3,j ] for |�n · ��β0,2| � 0

First, one has to calculate the angular region �φ given by

3

(
ζc,j

Aj

)3

ωc,j = ω�S2

3
A3

j � 1. (F.33)

Thus, one can estimate the conditions for regimes (a) and (b):∣∣sin φ∗,a�x�y − cos φ∗,a

(
1 + � 2

y

)∣∣ � 96

π3(R′)10/7

�b

sin θ
E3

0(zaAmax)
3/7 1

ω(�L)
,

|sin φ∗,b�y | � 3

16

�b

sin θ
zaAmax

1

ω(�L)
.

(F.34)

Assuming that �j � 1 in the first regime, the angular regions �φ are in the neighborhood of
π/2 and 3π/2 in regime (a) and near 0, π, 2π in regime (b). Note that for any electron, there
exists a frequency so that the right-hand side is small where one can estimate

�φa � 192

π3(R′)10/7

�b

sin θ
(zaAmax)

3/7 1

ω(�L)
,

�φb � 3

8

�b

sin θ

zaAmax

�y

1

ω(�L)
.

(F.35)
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The procedure for the spectrum (applying approximation (C.11)) is similar to the previous
subsection. However, this time the terms jx,y are of order (zaAmax)

5/7 in regime (a) and only
of order 1 in regime (b). Thus, one has

jy � −2�β0,y(ζend − ζmax)
2

ω�(1 − �n · �β0)
sin[ω�ζmax(1 − �n · �β0 − �n · ��β1)] exp[iω�ζmax(�n · ��β1)],

(F.36)

and jx analogously. For the products |jx,y |2, the sin2 components can be averaged due to the
large frequencies yielding

|jx |2 � 2�β2
0,x(ζend − ζmax)

4

�2(1 − �n · �β0)2ω2
,

|jxj
∗
y |2 � 2�β0,x�β0,y(ζend − ζmax)

4

�2(1 − �n · �β0)2ω2
, (F.37)

|jy |2 � 2�β2
0,y(ζend − ζmax)

4

�2(1 − �n · �β0)2ω2
.

Thus, one has

�2 �j⊥ · �j⊥
∗ � α2/ω2, (F.38)

with, using 1 + � 2
y = E2

0

(
1 − B2

x

)
,

α2 � π4(R′)4/7(zaAmax)
10/7

128�2
bS

2
1,aE

2
0

{[ (sin φ−By)(1−B2
x )−(cos φ−Bx)BxBy

1−(cos φBx+sin φBy)

]2
if 1/(2�b) � θ � 2/�b

1 − 2B2
x + B4

x + B2
xB

2
y otherwise

(F.39)

and finally for |�n · ��β0,2| � 0,

d2I

dω d�
� e2ω2

4π2c

α2

ω2
= e2α2

4π2c
= const. (F.40)

F.5. Calculation of the limiting frequency for equation (F.40)

The last task here is to find the proper lower limit for the validity of the approximation (C.11).
From inequality (C.12), one obtains the same limit ω∗

high as given in equation (F.32):

ω � ω∗
high � (�AaS1,a)

−1. (F.41)
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